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Abstract
Micro-expressions, the brief and involuntary facial expressions that reveal true emotions, are pivotal in understanding human affec-
tive states. Traditional methods of capturing these fleeting expressions often fail due to their limited temporal resolution and high
latency. This study explores the efficacy of event-based vision systems in detecting and analyzing micro-expressions. Unlike conven-
tional frame-based cameras, event-based sensors capture changes in the visual scene asynchronously with high temporal precision,
providing a robust solution for recording rapid facial movements. We developed an innovative framework integrating event-based
vision with advanced machine learning algorithms to detect and classify micro-expressions. Experimental results demonstrate sig-
nificant improvements in both accuracy and processing speed compared to traditional methods. This approach opens new avenues
for applications in psychology, security, and human-computer interaction, offering a deeper insight into human emotions beyond the
visible smile.

1 Introduction

In the rapidly evolving landscape of human-computer interac-
tion, understanding and accurately interpreting human emo-
tions have become increasingly essential. Traditional methods
of emotion detection often rely on facial expressions, yet they
are limited by the capabilities of standard cameras, which may
miss subtle cues and rapid changes in facial dynamics. Micro-
expressions, fleeting and involuntary facial movements lasting
only a fraction of a second, are particularly challenging to cap-
ture using conventional RGB cameras. These micro-expressions
provide crucial insights into an individual’s emotional state, re-
vealing underlying feelings that may not be consciously ex-
pressed.

To address this limitation, this project delves into the innova-
tive realm of event-based vision for Facial Expression Recogni-
tion (FER). Event cameras, inspired by the human visual system,
operate differently from conventional cameras by responding to
changes in the scene rather than capturing frames at fixed in-
tervals. This motion-driven approach enables event cameras to
capture data only when there are changes in pixel intensities,
resulting in a sparse yet high-resolution representation of dy-
namic scenes.

The utilization of event cameras offers a paradigm shift in
FER, enabling the detection of micro-expressions with unpar-
alleled accuracy and temporal resolution. By leveraging the
unique capabilities of event cameras, this project aims to de-
velop advanced algorithms capable of precisely recognizing and
interpreting a broad spectrum of human emotions, including
those expressed through subtle micro-expressions.

Beyond academic curiosity, the implications of this research
extend to practical applications in various domains. Im-
proved emotion recognition facilitates more natural and intu-
itive human-machine interaction, enhancing user experience
and communication in fields such as virtual reality, human-
computer interfaces, and affective computing. Moreover, the
ability to capture micro-expressions in challenging environ-
ments, such as low-light conditions or fast-paced dynamic set-
tings, opens avenues for applications in security, healthcare, and
behavioral analysis.

This project offers an exciting opportunity to engage in
cutting-edge research at the intersection of computer vision, ar-
tificial intelligence, and psychology.

2 Emotion

2.1 Context

An emotion is a complex reaction of the organism that manifests
itself through physiological, behavioral and cognitive responses
to an internal or external stimulus. Emotions play a central role
in the way human beings interact with the world around them,
influencing decisions, actions and interpersonal relationships.
They are often classified into several basic categories, such as
joy, fear, sadness, disgust, anger and surprise.

• Joy: Joy is a positive emotion often expressed through dis-
tinct facial movements. Expressions associated with joy
include opening themouth and smiling, sometimes accom-
panied by dimples. When someone is extremely happy,
they may open their mouth to laugh, exposing their teeth
and raising the corners of their mouth. A genuine smile,
also known as a Duchenne smile, engages the muscles
around the eyes, causing wrinkles at the corners of the
eyes and dimples on the cheeks.
The detection of joy using event-driven vision systems re-
lies on the ability of these sensors to rapidly register subtle
movements of the lips and eyes. For example, when the
corners of the lips lift, the sensor captures these changes
almost instantaneously, enabling precise analysis of the
smile. This technology overcomes the limitations of tradi-
tional cameras in terms of temporal resolution, offering a
detailed capture of the micro-expressions associated with
joy.

• Fear: Fear is an intense emotion often triggered by a per-
ception of threat or danger. Typical facial expressions of
fear include mouth opening and frowning. Opening the
mouth may be a reaction of surprise or preparation to
scream, while frowning indicates concentration or an at-
tempt to understand the source of the fear.
Event-driven vision sensors can capture these micro-
expressions with remarkable precision. When a person
rapidly opens their mouth and frowns, these sensors de-
tect the changes in real time, recording each movement in
detail. This ability to capture rapid, synchronized move-
ments is essential for accurate analysis of fearful expres-
sions, which can otherwise go unnoticed.

• Sadness: Sadness is often expressed by micro-expressions
such as frowning and blinking. Frowning in a state of sad-
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ness creates an appearance of dismay or grief, while blink-
ing may indicate a struggle to hold back tears or an effort
to mask sadness.
Event-driven vision systems can capture these subtle ex-
pressions with unprecedented precision. The blink, in par-
ticular, is a micro-expression that occurs in a fraction of
a second and can be easily missed by traditional capture
methods. Event sensors record these rapid movements,
enabling detailed analysis of the signs of sadness on a per-
son’s face.

• Disgust: Disgust is a negative emotional reaction often
triggered by unpleasant or repulsive stimuli. Typical facial
expressions of disgust include an inverted smile (where the
corners of the lips are turned downwards), a wrinkle of the
nose and a frown. These micro-expressions reflect intense
aversion or rejection.
The detection of disgust via event-driven vision systems
relies on the simultaneous capture of several distinct
micro-expressions. Sensors record changes in the muscles
around the mouth, nose and eyebrows, providing a com-
plete view of the disgusted expression. The ability of these
sensors to capture rapid, synchronized movements is cru-
cial for accurate analysis of this complex emotion.

• Anger: Anger often manifests itself through the con-
traction of the masseter muscles (jaw muscles) and a
pronounced frowning of the eyebrows. These micro-
expressions indicate the tension and aggression character-
istic of anger. Masseter contraction is particularly indica-
tive of intense anger, as it prepares the body for a possible
physical reaction.
Event-driven vision systems capture these rapid, intense
movements with great precision. Contraction of the
masseter muscles and frowning often occur simultane-
ously, and sensors can record these changes in real time.
This ability to detect complex micro-expressions enables a
deeper and more precise understanding of anger states.

• Surprise: Surprise is an emotion often triggered by unex-
pected events. Typical facial expressions of surprise in-
clude opening the mouth and rapidly raising the upper
eyelids. These micro-expressions indicate an immediate,
involuntary reaction to something unexpected.
Event-driven vision systems are particularly effective at
capturing expressions of surprise, thanks to their ability
to record rapid, sudden changes. When the mouth opens
and the eyelids lift, these sensors record these movements
almost instantaneously. This ability to detect rapid, syn-
chronized micro-expressions enables precise analysis of
surprise reactions.

2.2 Micro-expression

Micro-expressions are very rapid, involuntary facial movements
that occur in response to emotions experienced by a person.
These expressions, which generally last between 1/25th and
1/5th of a second, are often too rapid to be consciously perceived
by the human eye. Unlike longer-lasting, voluntary facial ex-
pressions, micro-expressions occur spontaneously and uncon-
trollably, revealing genuine emotions that the individual may be
trying to conceal. Because of their brevity and subtlety, micro-
expressions offer an authentic insight into internal emotional
states, and are of great interest in fields such as psychology,
lie detection and social interaction. The ability to identify and
analyze these micro-expressions can provide valuable informa-
tion about underlying emotions, often hidden by conscious, con-

trolled facial expressions.[8]

Figure 1. Examples of Facial Expressions and Corresponding Action
Units

2.3 Detection of the emotions

Our research focuses on the use of event-driven vision systems
to identify human emotions through the precise detection of
micro-expressions. Thanks to this technology, we have been
able to record extremely rapid and subtle facial movements, of-
ten undetectable by conventional cameras. Here’s howwe iden-
tified six specific emotions by analyzing combinations of micro-
expressions

• Joy To detect joy, we targeted two main micro-
expressions: the opening of the mouth and the smile.
Event-driven vision systems are particularly effective at
capturing lip corner elevation and dimple formation, key
indicators of a genuine smile. In addition, the opening of
the mouth, often associated with laughter, is rapidly de-
tected thanks to the high temporal resolution of the sen-
sors. These sensors record changes in the muscles around
the mouth in real time, enabling precise identification of
joy.

• Fear Fear often manifests itself as a combination of an
open mouth and a frown. Event sensors simultaneously
capture these two micro-expressions by detecting rapid
changes in the facial muscles. The sudden opening of the
mouth, often indicating a cry or a reaction of surprise, is
coupled with a frown, a sign of tension and concentra-
tion. This ability to record simultaneous movements en-
ables precise identification of expressions of fear.

• Sadness Sadness is often indicated by frowning and fre-
quent blinking. Event-driven vision systems capture these
micro-expressions by recording rapid eyelid movements
and forehead muscle contractions. Blinking, which may
be an attempt to hold back tears, is detected in real time,
while frowning, indicating grief or distress, is also accu-
rately captured.

• Disgust Disgust is manifested by a complex combination
of micro-expressions, including an inverted smile (where
the corners of the lips are directed downwards), a wrin-
kle of the nose and a frown. Event sensors are able to de-
tect these subtle andmultiple changes simultaneously. The
technology records muscle movements around the mouth
and nose, as well as forehead contractions, providing a de-
tailed analysis of this negative emotion.

• Anger Anger is often visible through the contraction of
the jawmuscles and a pronounced frown. Event-driven vi-
sion systems capture these micro-expressions by detecting
rapid, intense contractions of the jaw and forehead mus-
cles. The precision of these sensors makes it possible to
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identify even the most subtle forms of anger, by recording
the synchronized movements of facial muscles.

• Surprise Surprise is characterized by an open mouth and
rapid elevation of the upper eyelids. Event sensors are
particularly effective at capturing these sudden changes.
When a person is surprised, their mouth opens wide and
their eyelids rise, movements detected almost instanta-
neously by the sensors. This ability to record rapid, co-
ordinated facial expressions enables precise identification
of surprise.

3 Event-camera
3.1 Introduction
Event-driven cameras represent a major advance in image cap-
ture technology, offering significant advantages over traditional
cameras. Unlike conventional image sensors, which record
scenes by taking still images at regular intervals (i.e., frames per
second), event-driven cameras work by capturing only changes
in the visual scene. This approach enables extremely high tem-
poral resolution, essential for detecting rapid, subtle movements
such as facial micro-expressions.[2]

3.2 The functioning of event cameras
Event cameras use a fundamentally different approach to image
capture than traditional cameras. Here’s a detailed look at how
they work:

Independent and Asynchronous Pixels: Each pixel in
the event-camera operates independently and reacts asyn-
chronously to changes in light intensity. This means that each
pixel can detect and report a change without waiting for a full
image capture cycle.

Event detection : An "event" is generated when the change
in light intensity at a pixel exceeds a predetermined threshold.
This threshold can be adjusted to sensitize the camera to specific
variations in light intensity.

Event data : Each event comprises three main pieces of in-
formation:

• Spatial coordinates (x, y): The position of the pixel
where the change was detected.

• Timestamp: The exact moment when the event took
place, usually measured in microseconds.

• Polarity: The direction of the change in intensity (in-
crease or decrease).

Transmission and processing: Events are transmitted and
processed in real time. The data flow generated is much lower
than that of traditional cameras, as only changes are transmit-
ted, reducing the bandwidth required.

3.3 Advantages of Event Cameras
Event-driven cameras offer several distinct advantages over tra-
ditional cameras, particularly in applications requiring fast, ac-
curate motion capture.

High temporal resolution:
Event-driven cameras can capture motion with microsecond

temporal resolution, far surpassing traditional cameras. This
capability is essential for analyzing very fast-moving phenom-
ena, such as facial micro-expressions or rapid mechanical move-
ments.

Energy efficiency:
By recording only changes in the scene, event cameras con-

sume less energy. The sensors do not require constant lighting,
thus reducing energy consumption.

This efficiency is particularly beneficial for real-time applica-
tions and embedded devices requiring low power consumption.

Low latency:
The asynchronous nature of event capture minimizes la-

tency, as information is transmitted instantaneously as soon as
a change is detected.

This enables near real-time reaction, essential for applica-
tions such as robotics, autonomous vehicles and emotion de-
tection, where rapid responses are critical.

Robustness to Variable Light Conditions:
Event cameras operate effectively in low-light or variable-

light environments. Because they respond to changes in light
rather than absolute light levels, they can capture events in con-
ditions where traditional cameras would struggle.

This makes them ideal for surveillance and security applica-
tions, where lighting conditions can be unpredictable.

3.4 Comparison with traditional RGB cameras

Traditional RGB cameras capture images using a matrix sensor
that records color information (red, green, blue) for each pixel
at fixed intervals. Here’s a detailed comparison of the two tech-
nologies:

Capture method :
RGB Camera: Captures images at fixed frame rates (e.g. 30

frames per second), where each frame contains complete infor-
mation about the scene.

Event Camera: Captures only changes in the scene, with each
pixel operating independently and asynchronously.

Temporal resolution :
RGB camera: Temporal resolution is limited by the frame

rate. For example, a 30 fps camera has a temporal resolution
of 33 ms.

Event Camera: Temporal resolution can be on the order of
microseconds, enabling extremely fast events to be captured.

Data efficiency :
RGB Camera: Generates a large amount of data, as each im-

age contains complete information on the scene, regardless of
movement or change.

Event Camera: Generates less data by capturing only
changes, reducing bandwidth requirements and improving pro-
cessing efficiency.

Lighting conditions:
RGB Camera: Can have difficulties in low light or changing

light conditions, often requiring adjustments to gain or expo-
sure time.

Event Camera: Works effectively in low-light conditions, as
it detects changes in light rather than absolute light levels.

Applications :
RGB Camera: Used in applications where full image cap-

ture is required, such as photography, video and some forms
of surveillance.

Event Camera: Ideal for applications requiring fast, accurate
motion capture, such as robotics, autonomous vehicles, micro-
expression detection and real-time security systems.

Event cameras offer a revolutionary technology for image
capture, surpassing traditional RGB cameras in terms of tem-
poral resolution, energy efficiency and robustness to varying
light conditions. Their ability to detect rapid, subtle movements
opens up new possibilities in many fields, including robotics,
autonomous vehicles, security surveillance and emotional anal-
ysis. By capturing only changes in the scene, they enable more
precise and efficient analysis, particularly suited to real-time ap-
plications where speed and precision are crucial.
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Figure 2. event camera versus RGB camera.

4 Spiking Neural Network

4.1 context

Spiking Neural Networks (SNNs) are a class of artificial neu-
ral networks (ANNs) that more closely mimic the behavior of
natural neural networks. Unlike typical multi-layer perceptron
networks, which transmit information at every propagation cy-
cle, SNNs integrate the concept of time into their operational
model. Neurons in an SNN transmit information only when
their membrane potential—the intrinsic electrical charge across
the neuron’s membrane—reaches a specific threshold. At this
point, the neuron fires, generating a signal that propagates to
other neurons, which then adjust their membrane potentials in
response to this signal. This model of neuron, which fires upon
threshold crossing, is referred to as a spiking neuron model.

Detecting micro-expressions is well-suited to SNNs due to
their dynamic and temporally sensitive nature. For our project,
we employed an event camera that captures facial movements
by detecting changes in pixel intensity, analogous to the way
neurons respond to stimuli. An event camera does not record
static frames but rather detects changes in the scene, triggering
an output only when a change in intensity is detected—akin to
the firing of neurons. These intensity variations are processed as
inputs to the SNN, where a combination of such pulsations from
changed pixel intensities might collectively reach the threshold,
thus triggering a neuronal response. This makes SNNs particu-
larly effective for analyzing the high-speed, subtle facial move-
ments characteristic of micro-expressions.

4.2 Integrate-And-Fire-Models

The Integrate-and-Fire model is a fundamental neuron model
used in spiking neural networks (SNNs). It is designed to simu-
late the behavior of biological neurons, which integrate incom-
ing electrical signals until a threshold is reached, triggering a
spike or action potential. Thismodel captures the essential char-
acteristics of neuronal activity without the complexity of bio-
physically detailed models.

4.2.1 Mathematical Formulation The dynamics of the
membrane potential in an Integrate-and-Fire neuron are de-
scribed by the following differential equation:

𝜏
𝑑𝑢

𝑑𝑡
= −(𝑢 − 𝑢rest) + 𝑅𝐼 (𝑡)

where 𝑢 (𝑡) represents the membrane potential at time 𝑡 , 𝜏 is the
membrane time constant, 𝑢rest is the resting membrane poten-
tial, 𝑅 is the membrane resistance, and 𝐼 (𝑡) is the input current.

When the membrane potential 𝑢 (𝑡) reaches a certain thresh-
old 𝜃 , the neuron fires a spike, and the membrane potential is

subsequently reset to a lower value, typically below 𝑢rest. Af-
ter firing, the neuron enters a refractory period during which it
cannot spike again, regardless of the input.

Figure 3. Diagram illustrating the spike emission and reset mechanism
in an Integrate-and-Fire neuron.

4.2.2 Spike Emission and Reset Mechanism As shown in
the figure, the process of spiking and resetting is crucial for tem-
poral coding in neural networks. It allows neurons to encode in-
formation in the timing of spikes rather than the rate of firing,
which is more akin to how biological neural systems operate.

This model is particularly effective in applications like micro-
expression detection using event cameras, where temporal pre-
cision is crucial. The event-driven nature of both the camera
and the SNN ensures that the system is highly responsive and
energy-efficient, capturing subtle facial movements in real-time.

4.3 2D Leaky Integrate-and-Fire

The 2D leaky integrate-and-fire model is an extension of the
basic integrate-and-fire model, incorporating an additional di-
mension to the neuron’s dynamic properties. This model is de-
signed to better capture the complexities of neuronal behavior
by allowing the threshold for firing to vary based on the neu-
ron’s recent activity.

4.3.1 Model Description In this model, each neuron’s mem-
brane potential 𝑉 is updated based on the incoming spikes and
its current state. Unlike the standard model, which has a fixed
threshold, the 2D model allows the threshold 𝑉𝑡 to adapt over
time. This adaptation is critical in environments where the stim-
ulus characteristics are highly variable, as it allows the neuron
to modulate its sensitivity dynamically.

4.3.2 DynamicsAfter a Spike After the neuron fires a spike,
the membrane potential is reset to zero, and the threshold 𝑉𝑡 is
increased by a small increment 𝛿𝑉𝑡 . This mechanism is depicted
in the following equations:

𝑉 ← 0

𝑉𝑡 ← 𝑉𝑡 + 𝛿𝑉𝑡

The adaptation of the threshold is intended to prevent the
neuron from firing too frequently within a short time, a phe-
nomenon known as the refractory period. This adaptation can
be crucial for processing signals that require fine temporal res-
olution, such as the detection of micro-expressions in facial
recognition systems. We can see an illustration of 2D leaky
integrate-and-fire model in the figure bellow 4
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Figure 4. Graph showing the adaptation of the threshold 𝑉𝑡 and the
membrane potential reset in the 2D leaky integrate-and-fire model.

4.3.3 Impact on Neural Coding The dynamic threshold in-
troduces a form of plasticity into the neuron’s response, allow-
ing it to be more selective about when to fire based on both
the current and past inputs. This feature is particularly useful
in spiking neural networks used for tasks that require discrim-
ination of subtle and rapid changes in the input, such as those
captured by event cameras in micro-expression detection.

By adapting the firing threshold over time, the 2D leaky
integrate-and-fire model provides a more robust mechanism for
handling varying input intensities, thereby enhancing the net-
work’s ability to detect and respond to significant events within
noisy environments.

4.4 Structure of the neural network

In order to construct the spiking neural network (SNN), we uti-
lize the library SpikingJelly, which is an extension of PyTorch
tailored for SNN applications. This library retains many of
PyTorch’s functionalities but replaces traditional neurons with
spiking neurons, accommodating the temporal dynamics essen-
tial for processing data from event-based sensors.

The architecture of our SNN closely resembles that of a con-
volutional neural network (CNN), but with significant modifi-
cations to leverage the characteristics of spiking neurons. Fol-
lowing the initial convolutional and pooling layers, which are
crucial for extracting and downsampling features from the input
video, spiking neuron layers are integrated. These layers focus
on processing dynamic changes and detecting crucial character-
istics from the event-driven video data. This layered approach
ensures that each stage of the network adds to the selectivity
and invariance of the features, enhancing the detection of sub-
tle facial movements crucial for interpreting micro-expressions.

The input to our network consists of video data from an event
camera, formatted as numpy arrays (.npy files). This format is
particularly efficient for handling large datasets and facilitates
rapid processing within the neural network. The output of the
network is the detected facial movements, which are identified
based on the patterns of spikes generated by the final spiking
neuron layers.

For this project, we employ a pre-designed spiking neural
networkmodel available on GitHub under the repository named

‘Spike-Element-Wise-ResNet‘. This model provides a robust
framework that we can further customize and adapt through
modifications in the code. By adjusting parameters and inte-
grating new layers, we can optimize the network to better re-
spond to the specific nuances of facial expressions captured by
the event camera.

By utilizing ‘Spike-Element-Wise-ResNet‘, we leverage a
well-established model that has been proven effective in other
applications, ensuring our foundation is both solid and capable
of being tailored to the specific challenges and requirements of
detecting micro-expressions in real-time video data.

5 Dataset creation
To train our spiking neural network, we require a substantial
dataset of diverse facial movements. Given the scarcity of suit-
able resources online, particularly videos captured with event
cameras, we have opted to compile our own dataset. Utiliz-
ing our event camera, we aim to create a robust and usable
dataset that specifically addresses the unique requirements of
our project.

5.1 Online Resources and Datasets
In the development of our spiking neural network, we reviewed
several online datasets that are commonly used for facial ex-
pression and micro-expression detection. These datasets vary
significantly in their focus and format, influencing their suit-
ability for different types of neural network architectures.

• NEFER: This dataset is primarily designed for convolu-
tional neural networks (CNNs) and includes categorized
emotions. It is not specifically optimized for SNNs, which
may limit its direct applicability to our project [4].

• FES (Faces in Event Stream): Featuring 689 minutes of
event camera data, this dataset is exclusively geared to-
wards face recognition tasks rather than dynamic facial
movement or expression detection [5].

• CASME II (Chinese Academy of Sciences Micro-
expression): This dataset is tailored for micro-expression
analysis with videos recorded at 200 frames per second and
a resolution of 280x340 pixels. It categorizes expressions
into 5 classes, providing a nuanced view of facial expres-
sions [6].

• Nexdata/57 Types of Micro-expression Data: This ex-
tensive dataset includes micro-expression video data from
over 2,000 individuals across different ethnicities (Asian,
Black, Caucasian, and Brown). It is one of the most di-
verse collections available, supporting a wide range of fa-
cial recognition research [7].

While these datasets provide a valuable foundation for facial
expression analysis, they often exhibit significant imbalances in
the distribution of categories. Additionally, most are not specif-
ically designed for detecting subtle facial movements, which is
critical for micro-expression recognition. This highlights the
necessity for creating a custom dataset using our event camera,
which can more precisely capture the high-speed and subtle fa-
cial dynamics integral to our research on micro-expressions.

5.2 protocol
The protocol for recording micro-expressions was meticulously
crafted to ensure accurate capture and analysis of subtle facial
dynamics using an event camera and a thermal camera. This
section outlines the setup and procedure adopted for the dataset
creation.
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• Subjects were positioned in front of a white background to
avoid visual distractions and interference. A specific dis-
tance of 30-40 cm was maintained between the subjects
and both cameras to ensure optimal focus and frame com-
position. The setup aimed to standardize the recording en-
vironment across all sessions.

• Lighting was carefully adjusted to minimize shadows and
uniformly highlight facial features. The primary goal was
to ensure even illumination across the subject’s face, en-
hancing the visibility of micro-expressions and facilitating
their accurate detection by the cameras.

• Each subject was instructed to maintain a neutral facial
expression initially. A specific micro-expression was as-
signed to each subject prior to recording. Subjects were
trained to perform the micro-expression on cue, ensuring
consistency and reliability in the responses captured.

• To synchronize the event camera with the thermal camera,
a piece of paper was placed in front of both cameras. This
not only served to mark the start of the video recording
but also ensured that both cameras were perfectly aligned
in terms of timing, crucial for simultaneous data capture.

• Recording commenced simultaneously on both cameras
after the removal of the paper, following a brief two-
second countdown. This method guaranteed that the
recording phase started at exactly the same moment for
both devices, capturing the entire sequence of facial ex-
pressions.

• Five seconds after the recording started, the subject was
signaled to perform the designated micro-expression. This
cue was typically given by a simple hand gesture, ensur-
ing that the subject’s performance was timed accurately
relative to the recording.

• The recording session was concluded after ten seconds.
This durationwas chosen to balance the need for capturing
a complete expression while keeping the recording brief
enough to maintain the subject’s comfort and the session’s
efficiency.

This recording protocol was designed to optimize the capture
of micro-expressions using both an event camera and a thermal
camera, enabling detailed analysis of these rapid, subtle facial
movements.

5.3 Dataset Description
The dataset made for this analysis encompasses a total of 233
videos. Each video has an average duration of approximately 8
seconds, resulting in a cumulative total of around 30 minutes of
video footage. This dataset is rich in diversity, capturing various
facial expressions which are essential for comprehensive facial
expression recognition studies.

The facial expressions are categorized into the following dis-
tinct classes :

• Upper Lid Raiser: 14.2%
• Smile: 13.3%
• Open Mouth: 17.2%
• Nose Wrinkle: 13.3%
• Frown: 15.0%
• Blink Eyes: 13.7%
• Contract Jaw: 13.3%

As depicted in Figure 5, the pie chart illustrates the propor-
tional representation of each facial expression category within
the dataset. The "Open Mouth" expression is the most preva-
lent, constituting 17.2% of the dataset, while "Smile" and "Nose

Wrinkle" both represent 13.3%. The other categories, "Upper Lid
Raiser," "Frown," "Blink Eyes," and "Contract Jaw," are distributed
relatively evenly, each comprising around 13-15% of the dataset.

This dataset provides a balanced and comprehensive founda-
tion for analyzing facial expressions, allowing for detailed ex-
amination and training of facial recognition models. The diver-
sity in expression types ensures that the models trained on this
data can generalize well to a wide range of facial movements
and expressions.

In summary, the dataset’s extensive coverage of various facial
expressions, along with its substantial video duration, makes it
a valuable resource for research and development in the field of
facial expression recognition. The balanced distribution of ex-
pression categories further enhances its utility for training ro-
bust and accurate recognition models.

Figure 5. Distribution of Facial Expressions in the Dataset

6 Results
6.1 Accuracy on Seven Categories
The graph labeled "test_acc1" 6 displays the accuracy of the
SEWResNet model in classifying data into seven distinct cate-
gories. Initially, the accuracy shows a gradual increase from ap-
proximately 25% at the start to around 35% after 20 epochs. This
upward trend continues with some fluctuations, indicating the
model’s learning process as it adapts to the data’s complexity.
After 66 epochs, the accuracy stabilizes, reaching a peak pre-
cision of 43.18%. The smoothed accuracy value at this point is
approximately 40.24%, suggesting that the model has effectively
learned to categorize the data but still has room for improve-
ment.

Figure 6. Accuracy of the model SEWResNet
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6.2 Accuracy on Specific Subset
The second graph, "test_acc5," 7 represents the model’s accu-
racy on a specific subset of the dataset. Here, the initial accu-
racy is significantly higher, starting at around 85%, which sug-
gests that the model finds this subset less challenging. The accu-
racy reaches its maximum value of 95.45% at epoch 20, reflecting
the model’s strong performance on this particular data segment.
However, after this peak, the accuracy exhibits a progressive de-
cline, stabilizing around 86%. This pattern might indicate over-
fitting to the initial data followed by adjustments as the model
encounters more diverse examples within the subset. The final
smoothed accuracy recorded is 92.43%, showing a consistently
high performance overall.

Figure 7. Accuracy Trend Over Epochs for Test Accuracy 5

6.3 Loss Function Analysis
The "test_loss" 8 graph provides insights into the model’s loss
values during training, using the cross-entropy loss function.
Initially, the loss starts high at approximately 2.4, indicating the
model’s struggle to correctly classify the data. Over the first 20
epochs, the loss decreases steadily, reaching a minimum value
of about 1.8 around epoch 22. This reduction in loss corresponds
with the initial improvements in accuracy observed in the other
graphs. However, after reaching this minimum, the loss begins
to increase again, suggesting potential issues such as overfit-
ting or encountering more difficult data instances as training
progresses. By epoch 99, the loss stabilizes around 2.39, high-
lighting the need for further refinement to maintain lower loss
values consistently.

Figure 8. Cross entropy of the model SEWResNet

6.4 Comparison
In comparison to the work conducted by Berniconi [1] in the
research paper titled "Neuromorphic Event-based Facial Expres-

sion Recognition," our results demonstrate significant improve-
ments in emotion detection accuracy. Berniconi utilized a Con-
volutional Neural Network (CNN) to detect emotions from the
NEFER dataset, achieving an accuracy of 30.95%.

Our approach, leveraging a Spiking Neural Network (SNN)
combined with event-based vision, surpasses this performance.
As shown in the accuracy trends, our model achieves a peak
accuracy of 43.18% on the seven-category classification task and
stabilizes at approximately 40.24%. Furthermore, on a specific
subset of the dataset, our model reaches a maximum accuracy
of 95.45% and stabilizes around 86%, showcasing its robustness
and superior performance.

These results highlight the efficacy of spiking neural net-
works in handling the rapid, dynamic nature of micro-
expressions, providing a more accurate and reliable method
for facial emotion detection compared to traditional CNN ap-
proaches as demonstrated by Berniconi.

7 Discussion
For this project, the event-based vision system demonstrated
its effectiveness in capturing and analyzing micro-expressions,
achieving significant improvements in both accuracy and pro-
cessing speed compared to traditional frame-based cameras.
The high temporal resolution and low latency of event cameras
enabled the detection of rapid and subtle facial movements, pro-
viding a more accurate analysis of emotions.

7.1 Effectiveness of the Event-based Vision System

The event-based vision system showed superior performance in
detecting micro-expressions. The system’s high temporal reso-
lution allowed for the precise capture of quick facial movements,
which are often missed by conventional cameras. This capa-
bility is particularly beneficial in applications where rapid re-
sponse times are critical, such as security and human-computer
interaction. The integration of advancedmachine learning algo-
rithms further enhanced the system’s ability to classify micro-
expressions accurately, demonstrating a significant improve-
ment over traditional methods.

7.2 Limitations of the Approach

Despite its advantages, the event-based vision system has some
limitations. One major challenge is the need for sophisticated
algorithms to process the sparse and asynchronous data gener-
ated by event cameras. Developing these algorithms requires
significant computational resources and expertise in machine
learning. Additionally, event cameras can be sensitive to noise,
which may affect the accuracy of emotion detection in certain
environments. Ensuring consistent performance across varying
lighting conditions and facial expressions remains an ongoing
challenge.

7.3 Future Work

To further improve the performance of micro-expression detec-
tion systems, several research avenues can be explored.

We could explore more advanced learning techniques, such
as reinforcement learning or transfer learning, which could im-
prove the model’s ability to generalize. These methods would
allow the model to learn more effectively from limited data and
better adapt to different conditions and subjects. Integrating
attention mechanisms into the network would allow computa-
tional resources to focus on the most relevant regions of the
face during micro-expression detection. This could improve the
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accuracy and robustness of detection by concentrating on the
most significant details of facial expressions.

Developing methods to detect and classify micro-expressions
in more complex environments, such as cluttered scenes or dif-
ficult lighting conditions, is essential. This could include algo-
rithms robust to light variations and able to distinguish facial
expressions in various contexts.

Studying and implementing data preprocessing techniques
to reduce noise and improve the quality of captured events is
crucial. Better data preprocessing could lead to more accurate
micro-expression detection by eliminating interference and en-
hancing important features.

8 Conclusion
This project has demonstrated the significant advantages of
using event-based vision systems for detecting and analyzing
micro-expressions. By integrating event cameras with advanced
machine learning algorithms, we have achieved notable im-
provements in both the accuracy and processing speed of micro-
expression recognition compared to traditional methods. Our
approach leverages the high temporal resolution and efficiency
of event cameras, making it well-suited for real-time applica-
tions and environments with varying lighting conditions.

Throughout this research, we have underscored the potential
of spiking neural networks (SNNs) in processing the dynamic
and temporally sensitive data provided by event cameras. The
combination of these technologies offers a robust framework for
capturing subtle facial movements that are critical for interpret-
ing human emotions.

In conclusion, this project lays the groundwork for future ad-
vancements in micro-expression recognition, offering promis-
ing directions for enhancing human-computer interaction, se-
curity, and psychological research. Our findings highlight the
importance of innovative approaches in overcoming the limita-
tions of traditional methods, paving the way for more nuanced
and accurate emotion detection technologies.
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